Funktion:
\[
\frac{\left(1-x^2\right)
\left(y^2-4\right)-x^2-y^2+5}{\left(x^2+y^2+1\right)^2}
\]
Derivata m.a.p (x)
\[
\frac{-2 x \left(y^2-4\right)-2 x}{\left(x^2+y^2+1\right)^2}-\frac{4
x \left(\left(1-x^2\right)
\left(y^2-4\right)-x^2-y^2+5\right)}{\left(x^2+y^2+1\right)^3}
\]
Derivata m.a.p (y)
\[
\frac{2 \left(1-x^2\right) y-2 y}{\left(x^2+y^2+1\right)^2}-\frac{4 y
\left(\left(1-x^2\right)
\left(y^2-4\right)-x^2-y^2+5\right)}{\left(x^2+y^2+1\right)^3}
\]
Hälsningar,
Felicia